๋ฐ˜์‘ํ˜•

๐Ÿซ Study/์ˆ˜ํ•™ I 9

์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ˆ˜์—ด์˜ ๊ท€๋‚ฉ์  ์ •์˜ & ์œ ํ˜•

$a_{n+1}=pa_n+q$ ๊ผด์˜ ์ˆ˜์—ด (pqํ˜• ์ ํ™”์‹(๊ด€๊ณ„์‹)) * ๊ด€๊ณ„์‹์ด ์ž˜ ์•ˆ๋ณด์ž„ [๋ณ€ํ˜• ๋ฐฉ๋ฒ• ์™ธ์šฐ๊ธฐ] $a_{n+1}-\alpha =p(a_n-\alpha )$ $a_{n+1} =p(a_n-p\alpha +\alpha)$ โ–ถ $q=-p\alpha +\alpha $ $\alpha=p\alpha +q$ ($a_{n+1}=pa_n+q$ ๊ผด๊ณผ ๋น„์Šท) ๋„์›€์ด ๋ ๋งŒํ•œ ์ž๋ฃŒ https://m.blog.naver.com/ao9364/221651296608 ์ˆ˜์—ด์˜ ์ ํ™”์‹์˜ ๊ธฐ์ดˆ ํ•ด๋ฒ•๊ณผ ํŠน์„ฑ๋ฐฉ์ •์‹ ์ดํ•ดํ•˜๊ธฐ ๋“ค์–ด๊ฐ€๊ธฐ... ์ ํ™”์‹์„ ์ง์ ‘ ํ’€์–ด๋‚ด๋Š” ๋ฐฉ๋ฒ•์€ ์‚ฌ์‹ค ๊ต์œก๊ณผ์ •์—์„œ ๋น ์ง„์ง€ ์ข€ ์˜ค๋ž˜๋˜์—ˆ์ฃ ... ๋ฌผ๋ก  ๊ณ ๋“ฑํ•™๊ต ๋ชจ... blog.naver.com ๋ถ„์ˆ˜ ๊ผด์˜ ๊ด€๊ณ„์‹ : ์—ญ์ˆ˜ ์ทจํ•ด์„œ(๋’ค์ง‘์–ด์„œ) ๊ณ„์‚ฐ ํ›„ $\frac{1..

์ˆ˜ํ•™์  ๊ท€๋‚ฉ๋ฒ•

์ˆ˜์—ด์˜ ๊ท€๋‚ฉ์  ์ •์˜ : ์ผ๋ฐ˜์ ์œผ๋กœ ์ˆ˜์—ด {$a_n$}์„ ์ฒ˜์Œ ๋ช‡ ๊ฐœ์˜ ํ•ญ๊ณผ ์ด์›ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ํ•ญ ์‚ฌ์ด์˜ ๊ด€๊ณ„์‹์œผ๋กœ ์ •์˜ํ•˜๋Š” ๊ฒƒ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ๊ท€๋‚ฉ์  ์ •์˜ [1] $a_{n+1}=a_n+d$ $\Leftrightarrow a_{n+1}-a_n=d$ (์ผ์ •) (์ดํ•ญ) $\Leftrightarrow 2a_{n+1}=a_n+a_{n+2}$ (๋“ฑ์ฐจ์ค‘ํ•ญ์˜ ์„ฑ์งˆ ์ด์šฉ) [2] $a_{n+1}=a_n+f(n)$ โ†’ $a_n=a_1+f(1)+f(2)+...+f(n-1)$ (์ถ•์ฐจ๋Œ€์ž…๋ฒ• ์ด์šฉ) โ†’ $a_n=a_1+\sum_{k=1}^{n-1}f(k)$ (์™ธ์›Œ๋‘๋ฉด ์ •๋ง ํŽธ๋ฆฌ?) ๋“ฑ๋น„์ˆ˜์—ด์˜ ๊ท€๋‚ฉ์  ์ •์˜ [1] $a_{n+1}=r\times a_n$ $\Leftrightarrow \frac{a_{n+1}}{a_n}=r$ (์ผ์ •) $\L..

๋ถ€๋ถ„์˜ ํ•ฉ์ด ์ฃผ์–ด์ง„ ๋“ฑ๋น„์ˆ˜์—ด

ex) ๋“ฑ๋น„์ˆ˜์—ด ${a_n}$์˜ ์ฒซ์งธํ•ญ๋ถ€ํ„ฐ ์ œnํ•ญ๊นŒ์ง€์˜ ํ•ฉ $S_n$์— ๋Œ€ํ•˜์—ฌ $S_n=30, S_{2n}=50$์ผ ๋•Œ, $S_{3n}$์˜ ๊ฐ’์„ ๊ตฌํ•˜์‹œ์˜ค. - ์Žˆ ์ˆ˜ํ•™ I / 146p 970๋ฒˆ ๋ฌธ์ œ $ \begin{aligned}\dfrac{a\left( r^{2n}-1\right) }{r-1}=50\\ \dfrac{a\left( r^{n}-1\right) }{r-1}=30\\ \dfrac{\dfrac{a\left( r^{2n}-1\right) }{r-1}}{\dfrac{a\left( r^{n}-1\right) }{r-1}}=\dfrac{5}{3}\\ \dfrac{r^{2n}-1^{2}}{r^{n}-1}=\dfrac{\left( r^{n}+1\right) \left( r^{n}-1\right) }{r^{..

๋“ฑ๋น„์ˆ˜์—ด ๋ฌธ์ œ์—์„œ ๋‹จ์„œ ์ฐพ๊ธฐ

*a: ์ฒซ์งธ ํ•ญ, r: ๊ณต๋น„ โ€œ๋ชจ๋“  ํ•ญ์ด ์–‘์ˆ˜โ€: a>0, r>0 ์ˆ˜์—ด ${a_n}$์ด $\frac{a_{n+1}}{a_n}= \frac{a_{n+2}}{a_{n+1}} $์„ ๋งŒ์กฑ: ๋“ฑ๋น„์ˆ˜์—ด์ด๋‹ค. https://blog.scian.io/4 ์ฐธ๊ณ . ๋“ฑ์ฐจ์ˆ˜์—ด๊ณผ ๋“ฑ๋น„์ˆ˜์—ด ์šฉ์–ด์ •๋ฆฌ ์ˆ˜์—ด: ๊ทœ์น™์„ฑ์žˆ๋Š” ์ˆ˜์˜ ๋ฐฐ์—ด ํ•ญ: ์ˆ˜์—ด์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ฐ ์ˆ˜ ์ผ๋ฐ˜ํ•ญ: ์ˆ˜์—ด์„ a1, a2, an ์ด๋ผ๊ณ  ํ•  ๋•Œ, ์ œ nํ•ญ์„ ์ˆ˜์—ด์˜ ์ผ๋ฐ˜ํ•ญ์ด๋ผ๊ณ  ํ•œ๋‹ค. (n๊ฐ’๋งŒ ๋Œ€์ž…ํ•˜๋ฉด ๋ฐ”๋กœ n๋ฒˆ์งธ ํ•ญ์˜ ๊ฐ’์„ ๊ตฌํ•  ์ˆ˜ ์žˆ blog.scian.io

๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ์˜ ์ตœ๋Œ€·์ตœ์†Œ

๊ณต์ฐจ๊ฐ€ ์Œ์ˆ˜์ธ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ์˜ ์ตœ๋Œ“๊ฐ’ ํ•ญ์ด ์Œ์ˆ˜๊ฐ€ ๋˜๊ธฐ ์ง์ „๊นŒ์ง€์˜ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ์ด ์ตœ๋Œ€์ด๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, $a_1$, โ€ฆ 1, -1 ์ด๋ผ๋ฉด 1๊นŒ์ง€์˜ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ์ด ์ตœ๋Œ€์ด๋‹ค. (๊ณต์ฐจ๊ฐ€ ์–‘์ˆ˜์ธ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ์˜ ์ตœ์†Ÿ๊ฐ’์€ ์œ„์˜ ๋ฐ˜๋Œ€๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋  ๊ฒƒ์ด๋‹ค.)

๋“ฑ์ฐจ์ˆ˜์—ด๊ณผ ๋“ฑ๋น„์ˆ˜์—ด

์šฉ์–ด์ •๋ฆฌ ์ˆ˜์—ด: ๊ทœ์น™์„ฑ์žˆ๋Š” ์ˆ˜์˜ ๋ฐฐ์—ด ํ•ญ: ์ˆ˜์—ด์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๊ฐ ์ˆ˜ ์ผ๋ฐ˜ํ•ญ: ์ˆ˜์—ด์„ a1, a2, an ์ด๋ผ๊ณ  ํ•  ๋•Œ, ์ œ nํ•ญ์„ ์ˆ˜์—ด์˜ ์ผ๋ฐ˜ํ•ญ์ด๋ผ๊ณ  ํ•œ๋‹ค. (n๊ฐ’๋งŒ ๋Œ€์ž…ํ•˜๋ฉด ๋ฐ”๋กœ n๋ฒˆ์งธ ํ•ญ์˜ ๊ฐ’์„ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.) ๋“ฑ์ฐจ์ˆ˜์—ด : ์ฒซ์งธํ•ญ๋ถ€ํ„ฐ ์ฐจ๋ก€๋Œ€๋กœ ์ผ์ •ํ•œ ์ˆ˜๋ฅผ ๋”ํ•˜์—ฌ ๋งŒ๋“  ์ˆ˜์—ด ๊ณต์ฐจ: ๋“ฑ์ฐจ์ˆ˜์—ด์—์„œ ๋”ํ•˜๋Š” ์ผ์ •ํ•œ ์ˆ˜ (๊ณตํ†ต๋œ ์ฐจ์ด) ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ์ผ๋ฐ˜ํ•ญ: $an=a+(n-1)d$ (d: ๊ณต์ฐจ) ๋“ฑ์ฐจ์ค‘ํ•ญ: a,b,c๊ฐ€ ์ˆœ์„œ๋Œ€๋กœ ๋“ฑ์ฐจ์ˆ˜์—ด์„ ์ด๋ฃฐ ๋•Œ, b๋ฅผ a์™€ c์˜ ๋“ฑ์ฐจ์ค‘ํ•ญ์ด๋ผ๊ณ  ํ•œ๋‹ค. $b=\frac{a+c}{2}$ (b๋Š” a์™€ c์˜ ์‚ฐ์ˆ ํ‰๊ท ์ด๋‹ค.) ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ํ•ฉ ๋“ฑ์ฐจ์ˆ˜์—ด์˜ ์ฒซ์งธํ•ญ๋ถ€ํ„ฐ ์ œnํ•ญ๊นŒ์ง€์˜ ํ•ฉ์„ Sn์ด๋ผ๊ณ  ํ•˜๋ฉด, (๊ฐ€์šฐ์Šค๊ฐ€ 1๋ถ€ํ„ฐ 100๊นŒ์ง€ ๋”ํ•œ ๊ณต์‹ ์ด์šฉ) $\frac{100(100+1)}{2}$ ์•„..

๋ฐ˜์‘ํ˜•