I. νλ
νλ ν¨μ
$y=Asin(kx-\omega t)$ ($A$: μ§ν, $k$: νμ, $\omega$: κ°μ§λμ)
νμ $k=\frac{2\pi}{\lambda}$
κ°μ§λμ $\omega$ (rad/s)
$\omega=\frac{2\pi}{T}=2\pi f$ ($f$: μ§λμ)
$kv=\frac{2\pi}{\lambda}\cdot\frac{\lambda}{T}=\frac{2\pi}{T}=\omega$ ($\lambda$: νμ₯)
μμ
$(kx-\omega t)$: μμ (μμκ°)
μμμ°¨κ° $\pi$μ μ§μ λ°°: κ°μ μμ / νμ λ°°: λ°λ μμ
II. κ°μ
μ΄μ€ μ¬λ¦Ώ κ°μ μ€ν (by Young)
κ²½λ‘μ°¨ ($\Delta$)
$\Delta=|\overline{S_1P}-\overline{S_2P}|=dsin\theta\approx dtan\theta = \frac{dx}{L}$
κ°μ 쑰건
보κ°κ°μ: $\Delta=\frac{\lambda}{2}$μ μ§μ λ°°
μμκ°μ: $\Delta=\frac{\lambda}{2}$μ νμ λ°°
μ΄μν λ°μ(μ΄λμ΄) λ¬΄λ¬ μ¬μ΄μ κ°κ²©
κ°μ 쑰건과 ꡬλΆ!!
μ΄μν λ°μ(μ΄λμ΄) λ¬΄λ¬ μ¬μ΄μ κ°κ²©μ $\Delta x$, νμ₯μ $\lambda$λΌ νλ©΄,
$\Delta x=\frac{L\lambda}{d}$
λ°λ§μΌλ‘ κ΄λ‘λ₯Ό κ°λ Έμ λ (λ°λ§μ κ΅΄μ λ₯ : n)
$y' = \frac{aL}{d}(n-1)$
βΆ λ¬΄λ¬ κ°κ²©μ λ°λ§μΌλ‘ κ°λ¦¬μ§ μμμ λμ κ°κ³ , μ 체μ μΌλ‘ μμͺ½μΌλ‘ μΉμ°μΉλ€.
λ°λ§ κ°μ
πΌ Background // κ³ μ λ¨ λ°μ¬μ μμ λ¨ λ°μ¬
μν 맀μ§: κ΅΄μ λ₯ μ΄ μμ λ§€μ§ (νμ₯ κΈΈκ³ , μλ λΉ λ¦)
λ°ν 맀μ§: κ΅΄μ λ₯ μ΄ ν° λ§€μ§ (νμ₯ μ§§κ³ , μλ λλ¦Ό)
μν λ§€μ§ → λ°ν λ§€μ§ : κ³ μ λ¨ λ°μ¬ (μμμ΄ $\pi$λ§νΌ λ³ν)
λ°ν λ§€μ§ → μν λ§€μ§ : μμ λ¨ λ°μ¬ (λ°μ¬μ λ°λ₯Έ μμ λ³ν X)
λ°λ§μμμ κ΄λ‘μ°¨ ($\Delta$)
$\Delta = 2ndcos \theta$ ($\Delta$: κ΄λ‘μ°¨, λΉμ κ΅΄μ λ₯ μ΄ $n$μΈ λ§€μ§ μμμ μ΄λν¨)
λ°λ§μ μν λΉμ κ°μ 쑰건
- κ³ μ λ¨ λ°μ¬κ° 1ν μΌμ΄λ λ
λ³΄κ° κ°μ: $\Delta = 2ndcos\theta = \frac{\lambda}{2}(2m+1)$
μμ κ°μ: $\Delta = 2ndcos\theta = \frac{\lambda}{2}(2m)$
($m=0, 1, 2, \cdot\cdot\cdot$) - κ³ μ λ¨ λ°μ¬κ° 0ν or 2ν μΌμ΄λ λ
λ³΄κ° κ°μ: $\Delta = 2ndcos\theta = \frac{\lambda}{2}(2m)$
μμ κ°μ: $\Delta = 2ndcos\theta = \frac{\lambda}{2}(2m+1)$
($m=0, 1, 2, \cdot\cdot\cdot$)
ν¬κ³Όνλ λΉμ κ°μ 쑰건
μκΈ°κ°μ
κ°μ 쑰건
λ³΄κ° κ°μ: $\Delta = 2t = \frac{\lambda}{2}(2m+1)$
μμ κ°μ: $\Delta = 2t = \frac{\lambda}{2}(2m)$
($m=0, 1, 2, \cdot\cdot\cdot$)
$t=\frac{d}{L}x$
κ°μλ¬΄λ¬ κ°κ²© $\Delta x = \frac{\lambda}{2tan\theta}$
Plus. Newton Ring (λ΄ν΄ λ§)
$\Delta = 2d$
λ³΄κ° κ°μ: $\Delta = \frac{\lambda}{2}(2m+1)$
μμ κ°μ: $\Delta = \frac{\lambda}{2}(2m)$
$d=\frac{D}{L}x$