Intro 우리는 일반화학에서 다루는 양자역학 중에서 암기해야 할, Point 부분만을 골라 학습할 것이다. 양자역학 자체가 접하기도 어렵고, 이해하기는 더더욱 어렵기 때문에, 특히 시험을 앞둔 과학고/영재학교생이나 대학생은 암기하는 데 중점을 둘 것을 권장한다. 다만, 본 글에서는 수식적 증명의 과정을 비교적 상세히 작성하여 풀이에도 집중할 수 있도록 하였다. 필자 또한 암기에 도움을 받고자 본 글을 작성한다. 본문은 노트 필기와 비슷한 방식으로 작성될 것이며, 문장보다는 수식 또는 이미지 혹은 개요식의 텍스트가 중점적으로 배치될 것이다. 다만, 필요한 경우 문장으로 풀어서 설명할 수 있다. 앞으로 약 3~4개의 포스팅을 통해 양자역학에 대해 배우게 (암기하게) 될 것이다. 준비가 되었다면, 아래로 스..
Intro 우리는 일반화학에서 다루는 양자역학 중에서 암기해야 할, Point 부분만을 골라 학습할 것이다. 양자역학 자체가 접하기도 어렵고, 이해하기는 더더욱 어렵기 때문에, 특히 시험을 앞둔 과학고/영재학교생이나 대학생은 암기하는 데 중점을 둘 것을 권장한다. 다만, 본 글에서는 수식적 증명의 과정을 비교적 상세히 작성하여 풀이에도 집중할 수 있도록 하였다. 필자 또한 암기에 도움을 받고자 본 글을 작성한다. 본문은 노트 필기와 비슷한 방식으로 작성될 것이며, 문장보다는 수식 또는 이미지 혹은 개요식의 텍스트가 중점적으로 배치될 것이다. 다만, 필요한 경우 문장으로 풀어서 설명할 수 있다. 앞으로 약 5~6개의 포스팅을 통해 양자역학에 대해 배우게 (암기하게) 될 것이다. 준비가 되었다면, 아래로 스..
평행축 정리 질량중심에서의 관성 모멘트를 이용하여 질량중심을 지나는 축과 평행한 다른 축에서의 관성 모멘트를 구할 수 있는 정리이다. 위 그림을 참고하면 평행축 정리를 알 수 있으며, 결론적인 식은 아래와 같다. $\large I=I_{CM}+MD^2$
회전 운동과 병진 운동과의 관계 병진 운동에서 사용되는 운동 공식을 회전 운동에서도 유사하게 적용할 수 있다. 간단하게 생각하면, 병진 운동과 회전 운동은 아래처럼 대응된다고 생각해 볼 수 있으며, 웬만하면 아래를 병진 운동 공식에 적용하면 대충 들어 맞게 된다. 회전 운동 병진 운동 $\omega$ (각속도) $v$ (속도) $\alpha$ (각가속도) $a$ (가속도) $\tau$ (돌림힘) $F$ (힘) $\theta$ (각) $s$ (변위) $I$ (관성 모멘트) = $mr^2$ $m$ (질량) 관성 모멘트 $I=mr^2$ (단일 입자의 경우) $I=\sum_im_ir_i^2$ 등가속도 운동 공식 회전 운동 병진 운동 $\omega_f=\omega_i+\alpha t$ $v_f=v_i+at$ $\..
$Mdv=v_edm=-v_edM$ $\int^{v_f}_{v_i}dv=-v_e\int^{M_f}_{M_i}\frac{dM}{M}$ $v_f-v_i=v_e\ln\left(\frac{M_i}{M_f}\right)$ (추진력)=$M\frac{dv}{dt}=\left|v_e\frac{dM}{dt}\right|$ M: 계의 전체 질량, $v_e$: 배기 속력 * 위 식들은 로켓뿐 아니라 물을 발사하는 상황 등 유사한 상황에서도 적용이 가능하다.
크기가 있는 물체의 질량 중심의 위치 벡터 구하기 $\overrightarrow{r}_{CM}=\frac{1}{M}\int \overrightarrow{r}dm$ 위 식에서 r벡터를 x에 대한 식으로 나타내면, (아래 예시에서는 r벡터=x로 표현함.) $\overrightarrow{x}_{CM}=\frac{1}{M}\int \overrightarrow{x}dm=\frac{1}{M}\int^{L}_{0}x\lambda dx$ $\lambda$: 단위 길이당 질량, L: 크기가 있는 물체의 길이 이 때, $M=\int^{L}_{0}dm$을 이용하여 측정 대상 부분의 전체 무게를 구할 수 있다. 물론, $\lambda$가 변하는 경우에도 그 식을 대입하면, 질량 중심을 구할 수 있다.