[Calculus] Definition of Limit

Definition of Limit

$\lim_{x\rightarrow a}f(x)=L$

 

์œ„ ์‹์ฒ˜๋Ÿผ ๋‚˜ํƒ€๋‚˜๋Š” ๊ทนํ•œ์„ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์—ก์‹ค๋ก -๋ธํƒ€ ์ •์˜๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon$

 

์ขŒ๊ทนํ•œ๊ณผ ์šฐ๊ทนํ•œ์˜ ์ •์˜

์ฐธ๊ณ ๋กœ, ์šฐ๊ทนํ•œ๊ณผ ์ขŒ๊ทนํ•œ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •์˜๋œ๋‹ค.

$\lim_{x\rightarrow a^+}f(x)=L$

If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $a<x<a+\delta \Rightarrow |f(x)-L|<\varepsilon$

 

$\lim_{x\rightarrow a^-}f(x)=L$

If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $a-\delta<x<a \Rightarrow |f(x)-L|<\varepsilon$