Definition of Limit
$\lim_{x\rightarrow a}f(x)=L$
์ ์์ฒ๋ผ ๋ํ๋๋ ๊ทนํ์ ๋ค์๊ณผ ๊ฐ์ ์ก์ค๋ก -๋ธํ ์ ์๋ก ํํํ ์ ์๋ค.
If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $0<|x-a|<\delta \Rightarrow |f(x)-L|<\varepsilon$
์ข๊ทนํ๊ณผ ์ฐ๊ทนํ์ ์ ์
์ฐธ๊ณ ๋ก, ์ฐ๊ทนํ๊ณผ ์ข๊ทนํ์ ๋ค์๊ณผ ๊ฐ์ด ์ ์๋๋ค.
$\lim_{x\rightarrow a^+}f(x)=L$
If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $a<x<a+\delta \Rightarrow |f(x)-L|<\varepsilon$
$\lim_{x\rightarrow a^-}f(x)=L$
If and only if for all $\varepsilon>0$, there exists $\delta>0$, such that $a-\delta<x<a \Rightarrow |f(x)-L|<\varepsilon$