[์ผ๋ฐ˜๋ฌผ๋ฆฌํ•™] ํšŒ์ „ ์šด๋™ ์—๋„ˆ์ง€์™€ ๊ด€์„ฑ ๋ชจ๋ฉ˜ํŠธ

ํšŒ์ „ ์šด๋™ ์—๋„ˆ์ง€

ํšŒ์ „ ์šด๋™์—์„œ๋„ ์šด๋™ ์—๋„ˆ์ง€๊ฐ€ ์กด์žฌํ•จ.
์ด๋•Œ ํšŒ์ „ ์šด๋™ ์—๋„ˆ์ง€ $K_R=\frac{1}{2}\sum_i m_i r_i^2 \omega^2$
์—ฌ๊ธฐ์— ์•„๋ž˜ ๊ด€์„ฑ ๋ชจ๋ฉ˜ํŠธ๋ฅผ ์ ์šฉํ•˜์—ฌ ์ถฉ๋ถ„ํ•œ ๋ฏธ์†Œ ์งˆ๋Ÿ‰์„ ์žก์œผ๋ฉด,
$K_R=\frac{1}{2}I\omega^2$

๊ด€์„ฑ ๋ชจ๋ฉ˜ํŠธ (moment of inertia)

ํšŒ์ „ ์šด๋™์„ ์œ ์ง€ํ•˜๋ ค๋Š” ์ •๋„, ์งˆ๋Ÿ‰์˜ ๋ถ„ํฌ์™€ ํšŒ์ „์ถ•๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ์˜ ์ œ๊ณฑ์— ๋น„๋ก€
๋ฌผ์ฒด์˜ ํ˜•ํƒœ์™€ ์งˆ๋Ÿ‰ ๋ถ„ํฌ์— ๋”ฐ๋ผ ๋‹ค๋ฆ„
$I=\sum m_i r_i^2$

Source โ˜ https://web2.ph.utexas.edu/~coker2/index.files/RI.htm

Thin cylindrical shell

$I_{CM}=MR^2$

Hollow Cylinder

$I_{CM}=\frac{1}{2}M\left(R_1^2+R_2^2\right)$

Solid cylinder or disk

$I_{CM}=\frac{1}{2}MR^2$

Rectangular plate

$I_{CM}=\frac{1}{12}M(a^2+b^2)$

Long, thin rod (rotation axis through center)

$I_{CM}=\frac{1}{12}ML^2$

Long, thin rod (rotation axis through end)

$I_{CM}=\frac{1}{3}ML^2$

Solid sphere

$I_{CM}=\frac{2}{5}MR^2$

Thin spherical shell

$I_{CM}=\frac{2}{3}MR^2$