[Calculus] ์ค‘์š”ํ•œ ํ•จ์ˆ˜๋“ค์˜ ํ…Œ์ผ๋Ÿฌ(๋งคํด๋กœ๋ฆฐ) ๊ธ‰์ˆ˜

$e^x$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

$e^x=\sum_{n=0}^\infty\dfrac{f^{(n)}(0)}{n!}x^n=\sum_{n=0}^\infty\dfrac{x^n}{n!}=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots$

 

$\sin x$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

$\sin x = \sum_{n=0}^\infty (-1)^n\dfrac{x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots$

 

$\cos x$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

sin x์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜๋ฅผ ๋ฏธ๋ถ„ํ•˜๋Š” ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋ฉด ์‰ฝ๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

 

$\cos x = \dfrac{d}{dx} (\sin x) = \dfrac{d}{dx}\left(x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots\right) = \sum_{n=0}^\infty (-1)^n\dfrac{x^{2n}}{(2n)!} = 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots$

 

$\arctan x$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

$\arctan x = \sum_{n=0}^\infty (-1)^n \dfrac{x^{2n+1}}{2n+1}$

 

$\cosh x, \sinh x$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

์ด ๋•Œ, $\cosh x$์™€ $\sinh x$๋Š” ๋ฏธ๋ถ„ํ•œ ๊ฒƒ์ด ๊ฐ๊ฐ ์„œ๋กœ์ด๋ฏ€๋กœ, ์Œ์ˆ˜ํ•ญ์„ ํฌํ•จํ•˜์ง€ ์•Š๋Š”๋‹ค.

 

$\cosh x = \sum_{n=0}^{\infty} \dfrac{x^{2n}}{(2n)!}$

 

$\sinh x = \sum_{n=0}^{\infty} \dfrac{x^{2n+1}}{(2n+1)!}$

 

$\dfrac{1}{1-x}$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

$\dfrac{1}{1-x}=\sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+\cdots$ (if $-1<x<1$)

 

$\ln (1+x)$์— ๋Œ€ํ•œ ๋งคํด๋กœ๋ฆฐ ๊ธ‰์ˆ˜

$\ln (1+x) = \sum_{n=1}^{\infty} (-1)^{n-1}\dfrac{x^n}{n} = x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\cdots$ (if $-1<x \leq 1$)