$e^x$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
$e^x=\sum_{n=0}^\infty\dfrac{f^{(n)}(0)}{n!}x^n=\sum_{n=0}^\infty\dfrac{x^n}{n!}=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\cdots$
$\sin x$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
$\sin x = \sum_{n=0}^\infty (-1)^n\dfrac{x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots$
$\cos x$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
sin x์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์๋ฅผ ๋ฏธ๋ถํ๋ ๋ฐฉ์์ ์ฌ์ฉํ๋ฉด ์ฝ๊ฒ ๊ตฌํ ์ ์๋ค.
$\cos x = \dfrac{d}{dx} (\sin x) = \dfrac{d}{dx}\left(x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots\right) = \sum_{n=0}^\infty (-1)^n\dfrac{x^{2n}}{(2n)!} = 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots$
$\arctan x$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
$\arctan x = \sum_{n=0}^\infty (-1)^n \dfrac{x^{2n+1}}{2n+1}$
$\cosh x, \sinh x$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
์ด ๋, $\cosh x$์ $\sinh x$๋ ๋ฏธ๋ถํ ๊ฒ์ด ๊ฐ๊ฐ ์๋ก์ด๋ฏ๋ก, ์์ํญ์ ํฌํจํ์ง ์๋๋ค.
$\cosh x = \sum_{n=0}^{\infty} \dfrac{x^{2n}}{(2n)!}$
$\sinh x = \sum_{n=0}^{\infty} \dfrac{x^{2n+1}}{(2n+1)!}$
$\dfrac{1}{1-x}$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
$\dfrac{1}{1-x}=\sum_{n=0}^{\infty}x^n=1+x+x^2+x^3+\cdots$ (if $-1<x<1$)
$\ln (1+x)$์ ๋ํ ๋งคํด๋ก๋ฆฐ ๊ธ์
$\ln (1+x) = \sum_{n=1}^{\infty} (-1)^{n-1}\dfrac{x^n}{n} = x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\dfrac{x^4}{4}+\cdots$ (if $-1<x \leq 1$)