평균변화율과 미분계수 - 이차함수
이차함수에서의 평균변화율과 미분계수 이차함수 $f(x)=px^2+qx+c$에서 미분계수가 평균변화율과 같은 지점 $c=\frac{a+b}{2}$ (a와 b의 평균 지점) [증명] $f(x)=px^2+qx+c, f'(x)=2px+q$ $\frac{(pb^2+qb+c)-(pa^2+qa+c)}{b-a}$ $\frac{p(b^2-a^2)-q(b-a)}{b-a}$ $p(b+a)+q=2pc+q$ $2c=a+b$ $c=\frac{a+b}{2}$ ▷ 어떤 이차함수던지 상관없이 항상 성립함!