SCIAN
close
프로필 배경
프로필 로고

SCIAN

  • SCIAN (159)
    • 🤖 AI (0)
      • AI Study (0)
      • AI Dev (0)
    • 🏫 Study (114)
      • Math (47)
      • Physics (20)
      • Chemistry (16)
      • Biology (8)
      • Earth Science (5)
      • Paper Research (1)
      • 기타 과목 (17)
    • 잇(IT)! 가이드 (5)
    • 🏅Google Product Expert (6)
      • Gmail (1)
      • YouTube (0)
      • Chrome (1)
      • Google 계정 (3)
    • ✨ Lifehacks (1)
    • 💻 IT (15)
      •  Apple (4)
      • ⭐️ Lifehacks (8)
    • 👨‍💻 Dev (10)
      • iOS (1)
      • Android (0)
      • Cyber Security (0)
      • Web (6)
      • BOJ (2)
      • macOS (1)
    • 🔗 Links | Scrap (3)
    • ✈️ Travel (0)
    • 🙏🏻 ETC (4)
      • 홍보 (2)
  • 홈
  • 태그
  • 방명록
  • Admin

관계식이 주어질 때 미분계수 구하기

아래 3가지를 구해놓고 문제 풀기! (암기!) [1] f(0) [2] f’(0) → 미분계수의 정의식 [3] f’(x) → 도함수의 정의식

  • format_list_bulleted 🏫 Study/Math
  • · 2021. 8. 29.
  • textsms
평균변화율과 미분계수 - 이차함수

평균변화율과 미분계수 - 이차함수

이차함수에서의 평균변화율과 미분계수 이차함수 $f(x)=px^2+qx+c$에서 미분계수가 평균변화율과 같은 지점 $c=\frac{a+b}{2}$ (a와 b의 평균 지점) [증명] $f(x)=px^2+qx+c, f'(x)=2px+q$ $\frac{(pb^2+qb+c)-(pa^2+qa+c)}{b-a}$ $\frac{p(b^2-a^2)-q(b-a)}{b-a}$ $p(b+a)+q=2pc+q$ $2c=a+b$ $c=\frac{a+b}{2}$ ▷ 어떤 이차함수던지 상관없이 항상 성립함!

  • format_list_bulleted 🏫 Study/Math
  • · 2021. 8. 29.
  • textsms
미분계수와 도함수 (2) - 미분가능성과 연속성

미분계수와 도함수 (2) - 미분가능성과 연속성

미분계수와 도함수 (1)편 미분계수와 도함수 (1) - 평균변화율과 순간변화율, 미분계수 평균변화율 & 순간변화율 증분 ($\Delta$) (구간 [a, x]에서의 증분) x값의 변화량 x-a를 x의 증분, y값의 변화량 f(x)-f(a)를 y의 증분이라 하고, 각각 $\Delta x,\ \Delta y$와 같이 나타낸다. 평균변화율 함수.. blog.scian.io 미분가능성과 연속성 함수 $f(x)$의 x=a에서의 미분계수 $f^\prime (a)$가 존재할 때, 함수 $f(x)$는 x=a에서 미분가능하다. x=a에서 y=f(x)는 미분가능하다 → $f^\prime (a)$가 존재한다!! → 우미분계수($f^\prime (a)$의 우극한)와 좌미분계수($f^\prime (a)$의 좌극한)가 일치한다...

  • format_list_bulleted 🏫 Study/Math
  • · 2021. 8. 28.
  • textsms
미분계수와 도함수 (1) - 평균변화율과 순간변화율, 미분계수

미분계수와 도함수 (1) - 평균변화율과 순간변화율, 미분계수

평균변화율 & 순간변화율 증분 ($\Delta$) (구간 [a, x]에서의 증분) x값의 변화량 x-a를 x의 증분, y값의 변화량 f(x)-f(a)를 y의 증분이라 하고, 각각 $\Delta x,\ \Delta y$와 같이 나타낸다. 평균변화율 함수 y=f(x)에서 x의 값이 a에서 x까지 변할 때의 평균변화율: $\frac{\Delta y}{\Delta x}=\frac{f(x)-f(a)}{x-a}=\frac{f(a+\Delta x)-f(a)}{\Delta x}$ = $\overleftrightarrow{AP}$의 기울기 (평균변화율의 기하적 정의) 순간변화율 순간변화율: $f^\prime (a)=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x}=\lim..

  • format_list_bulleted 🏫 Study/Math
  • · 2021. 8. 28.
  • textsms
  • navigate_before
  • 1
  • navigate_next
공지사항
  • 방문해 주셔서 감사합니다 :)
전체 카테고리
  • SCIAN (159)
    • 🤖 AI (0)
      • AI Study (0)
      • AI Dev (0)
    • 🏫 Study (114)
      • Math (47)
      • Physics (20)
      • Chemistry (16)
      • Biology (8)
      • Earth Science (5)
      • Paper Research (1)
      • 기타 과목 (17)
    • 잇(IT)! 가이드 (5)
    • 🏅Google Product Expert (6)
      • Gmail (1)
      • YouTube (0)
      • Chrome (1)
      • Google 계정 (3)
    • ✨ Lifehacks (1)
    • 💻 IT (15)
      •  Apple (4)
      • ⭐️ Lifehacks (8)
    • 👨‍💻 Dev (10)
      • iOS (1)
      • Android (0)
      • Cyber Security (0)
      • Web (6)
      • BOJ (2)
      • macOS (1)
    • 🔗 Links | Scrap (3)
    • ✈️ Travel (0)
    • 🙏🏻 ETC (4)
      • 홍보 (2)
최근 글
인기 글
최근 댓글
태그
  • #중3
  • #화학
  • #국어
  • #수학
  • #함수
  • #수학I
  • #수학II
  • #과학
  • #물리
  • #물리학
전체 방문자
오늘
어제
전체

본 사이트에서는 부정 이용 방지, 사용자 통계 분석 등을 위해 구글 애널리틱스 등의 트래커를 사용하며, 이에 거부하신다면 광고 최적화 끄기, 트래킹 차단 등의 기능을 이용해 주시기 바랍니다.

Copyright © SCIAN All rights reserved.
Designed by JJuum

티스토리툴바