관계식이 주어질 때 미분계수 구하기
아래 3가지를 구해놓고 문제 풀기! (암기!) [1] f(0) [2] f’(0) → 미분계수의 정의식 [3] f’(x) → 도함수의 정의식
- 🏫 Study/Math
- · 2021. 8. 29.
아래 3가지를 구해놓고 문제 풀기! (암기!) [1] f(0) [2] f’(0) → 미분계수의 정의식 [3] f’(x) → 도함수의 정의식
이차함수에서의 평균변화율과 미분계수 이차함수 $f(x)=px^2+qx+c$에서 미분계수가 평균변화율과 같은 지점 $c=\frac{a+b}{2}$ (a와 b의 평균 지점) [증명] $f(x)=px^2+qx+c, f'(x)=2px+q$ $\frac{(pb^2+qb+c)-(pa^2+qa+c)}{b-a}$ $\frac{p(b^2-a^2)-q(b-a)}{b-a}$ $p(b+a)+q=2pc+q$ $2c=a+b$ $c=\frac{a+b}{2}$ ▷ 어떤 이차함수던지 상관없이 항상 성립함!
미분계수와 도함수 (1)편 미분계수와 도함수 (1) - 평균변화율과 순간변화율, 미분계수 평균변화율 & 순간변화율 증분 ($\Delta$) (구간 [a, x]에서의 증분) x값의 변화량 x-a를 x의 증분, y값의 변화량 f(x)-f(a)를 y의 증분이라 하고, 각각 $\Delta x,\ \Delta y$와 같이 나타낸다. 평균변화율 함수.. blog.scian.io 미분가능성과 연속성 함수 $f(x)$의 x=a에서의 미분계수 $f^\prime (a)$가 존재할 때, 함수 $f(x)$는 x=a에서 미분가능하다. x=a에서 y=f(x)는 미분가능하다 → $f^\prime (a)$가 존재한다!! → 우미분계수($f^\prime (a)$의 우극한)와 좌미분계수($f^\prime (a)$의 좌극한)가 일치한다...
평균변화율 & 순간변화율 증분 ($\Delta$) (구간 [a, x]에서의 증분) x값의 변화량 x-a를 x의 증분, y값의 변화량 f(x)-f(a)를 y의 증분이라 하고, 각각 $\Delta x,\ \Delta y$와 같이 나타낸다. 평균변화율 함수 y=f(x)에서 x의 값이 a에서 x까지 변할 때의 평균변화율: $\frac{\Delta y}{\Delta x}=\frac{f(x)-f(a)}{x-a}=\frac{f(a+\Delta x)-f(a)}{\Delta x}$ = $\overleftrightarrow{AP}$의 기울기 (평균변화율의 기하적 정의) 순간변화율 순간변화율: $f^\prime (a)=\lim_{\Delta x \rightarrow 0}\frac{\Delta y}{\Delta x}=\lim..