f(x)=f(-x)가 성립한다
f(x)=f(-x)가 성립한다. ↔ f(x)는 우함수이다. ↔ f(x)는 y축 대칭이다. ↔ f(x)는 짝수차 함수 (또는 상수항)이다.
- 🏫 Study/Math
- · 2021. 9. 6.
본 포스팅은 쎈닷컴 김재은 선생님의 수학II 강좌를 바탕으로 작성했음을 밝힙니다. 방정식에의 활용 방정식의 실근의 개수 1️⃣ $f(x)=0$의 서로 다른 실근의 개수 $f(x)=0$의 실근 → $\begin{cases}y=f(x)\\y=0\end{cases}$의 교점의 x좌표 → $y=f(x)$의 x절편 ⭐️ $y=f(x)$의 x절편의 개수 ($f(x)$의 그래프와 x축의 교점의 개수) 2️⃣ $f(x)=g(x)$의 서로 다른 실근의 개수 $f(x)=g(x)$의 실근 → $\begin{cases}y=f(x)\\y=g(x)\end{cases}$의 교점의 x좌표 → $\begin{cases}y=f(x)-g(x)\\y=0\end{cases}$의 교점의 x좌표 → $y=f(x)-g(x)$의 x절편 삼차방정식의..
본 포스팅은 쎈닷컴 김재은 선생님의 수학II 강좌를 바탕으로 작성했음을 밝힙니다. 도함수의 활용 II (1) 편 도함수의 활용 II (1) - 함수의 증가와 감소, 함수의 극대와 극소, 극값 함수의 증가와 감소 함수 f(x)가 어떤 구간에 속하는 임의의 두 수 $x_1, x_2$에 대하여 $x_1 1️⃣ $f(x_1) 2️⃣ $f(x_1)>f(x_2)$이면 f(x)는 이 구간에서 감소 함수의 증가와 감소의 판정 함수 f(x)가 어떤.. blog.scian.io 함수의 그래프와 함수의 최대·최소 : 1개씩만 존재! (극대, 극소와 헷갈리면 안됨!) f(x)가 [a, b]에서 연속일 때 최댓값, 최솟값 구하기 1️⃣ f'(x)로 그래프의 개형 구하기 * 그래프 개형 그리기: 도함수의 활용 II (1) - 함..
본 포스팅은 쎈닷컴 김재은 선생님의 수학I 강좌를 바탕으로 작성했음을 밝힙니다. 참고: 삼차함수가 극값을 가질 조건 삼차함수가 극값을 가질 조건 본 포스팅은 쎈닷컴 김재은 선생님의 수학I 강좌를 바탕으로 작성했음을 밝힙니다. $f(x)=ax^3+bx^2+cx+d$ (a>0)의 그래프의 개형 → $f'(x)=3ax^2+2bx+c$ f'(x)=0의 실근의 개수가 그래프의 개형&극값에 영향 D: blog.scian.io $f(x)=ax^4+bx^3+cx^2+dx+e$ (a>0)의 그래프의 개형 f'(x)=0의 실근의 개수가 그래프의 개형&극값에 영향 📚 f'(x)=0의 실근의 개수 1️⃣ 서로 다른 세 실근 ex) f'(x)=(x-1)(x-2)(x-3) : 극댓값 1개, 극솟값 2개 (a>0) / 극댓값 2개..
본 포스팅은 쎈닷컴 김재은 선생님의 수학II 강좌를 바탕으로 작성했음을 밝힙니다. $f(x)=ax^2+bx+c$ (a>0) f(x)=0 함(수값),판(별식),대(칭축) 조건 이용 1️⃣ 두 실근이 모두 p보다 크다. 함: f(p)>0 판: $D\geq 0$ 대: $-\frac{b}{2a}>p$ 2️⃣ 두 실근이 모두 p보다 작다. 함: f(p)>0 판: $D\geq 0$ 대: $-\frac{b}{2a}0, f(q)>0 판: $D\geq 0$ 대: $p
본 포스팅은 쎈닷컴 김재은 선생님의 수학I 강좌를 바탕으로 작성했음을 밝힙니다. $f(x)=ax^3+bx^2+cx+d$ (a>0)의 그래프의 개형 → $f'(x)=3ax^2+2bx+c$ f'(x)=0의 실근의 개수가 그래프의 개형&극값에 영향 D: f'(x)의 판별식 1️⃣ 서로 다른 두 실근 $D/4=b^2-3ac>0$ : 극값을 갖는다. 2️⃣ 중근 $D/4=b^2-3ac=0$ : 극값을 갖지 않는다. (a>0일 때 계속 올라감, a
f(x)=f(-x)가 성립한다. ↔ f(x)는 우함수이다. ↔ f(x)는 y축 대칭이다. ↔ f(x)는 짝수차 함수 (또는 상수항)이다.